

SUBSEA COATING SOLUTIONS GLOBAL PRODUCTS AND SYSTEMS

FROM SPEC TO PROTECT

sherwin-williams.com/protective 10-19-22_acc <u>Accessibility Statement</u>

COATINGS FOR EXTREME SUBSEA ENVIRONMENTS

MAXIMUM PROTECTION AGAINST CORROSION AND HIGH OPERATING TEMPERATURES

Oil and gas production assets placed deep on the seafloor demand a high level of protection and performance. Extreme subsea environments allow no margin for error against aggressive corrosive conditions and elevated operating temperatures.

Protect your assets against catastrophic failures with the Sherwin-Williams line of DURA-SUB[™] C liquid and powder coatings. As the only manufacturer making both powder and liquid coatings for specialized subsea applications, Sherwin-Williams is your one-stop shop for high-performing solutions.

TESTED TO PERFORM

Sherwin-Williams DURA-SUB C coatings deliver trusted performance through pre-qualification to global industry standards.

LIQUID COATINGS TESTED TO:

- NORSOK M-501, Edition 6, Coating system no. 7C (high operating temperature > 122°F/50°C, up to 392°F/200°C) and NORSOK M-501, Edition 6, Coating system no. 7B (standard operating temperature/ambient operating temperature 122°F/50°C)
- System also meets testing requirements of NORSOK M-501 Edition 6, Coating system no. 7A

POWDER COATINGS TESTED TO:

- ISO 21809 Series
- Project specifications (based on requirements for pipe diameter, length, flexibility and other key project specs)

FIELD PROOF POINT

COST SAVINGS WITH TESTED MATERIALS

> The Challenge:

When subsea projects are delayed, materials sit dockside. When exposed to aggressive marine environments, these coated assets often experience corrosion which compromises the quality and long-term integrity of the structure.

>>> The Cost:

To prevent coated assets from being exposed to the corrosive elements, customers often construct temporary storage for protection, incurring considerable unplanned project costs.

>>> The Solution:

Sherwin-Williams invested in third-party corrosion testing of DURA-SUB C1230 for 7A splash zone environments. The testing was done to ensure assets coated with this product would not be compromised by exposure to extreme elements.

SUBSEA COATING SOLUTIONS

GLOBAL PRODUCTS AND SYSTEMS

LIQUID AND POWDER FROM ONE COATINGS SUPPLIER

Sherwin-Williams has a long history of providing high-quality products for the oil and gas industry and delivering unique value to asset owners and EPC firms.

- Consistent products and unmatched service globally for dependable project execution
- Reduced touchpoints for owners, operators and producers with streamlined ordering and delivery
- Ability to provide comprehensive evaluation of a coatings portfolio
- One point of contact to help ensure proper liquid and powder coating compatibility and project success

CONTINUOUS PRODUCT IMPROVEMENT

Progress doesn't come through being idle. Sherwin-Williams has made significant investments in both people and testing resources to strengthen coatings capabilities in the subsea oil and gas market. Our teams are committed to continuous in-house and third-party testing of existing and new products to ensure optimal performance and safety.

FIELD PROOF POINT

ACCELERATED INSTALLATION AND FLEXIBILITY

> The Challenge:

Traditionally, pipe pieces are placed on a barge, then welded and coated at sea. After the coating and welding process, the pieces are submerged using an S-lay or J-lay.

>> The Cost:

A barge can be very costly to operate per day, and it can take weeks at sea to install subsea pipe. This process is time consuming, including multiple barge trips to bring more pipe to construct and submerge.

>>>> The Solution:

Pipe coated with DURA-SUB C powder products has the flexibility to be reeled. By using a spool lay, customers can increase the speed of installation because the pipe is pre-welded and coated onshore. In addition, coatings and welds are much safer in a controlled environment when applied on land, rather than at sea.

MEET OUR EXPERTS

True innovation starts with people, not products. Meet our global technology experts who lead the industry and drive new product development.

Neil Wilds, Global Product Director - Corrosion Under Insulation (CUI) and Testing

With 35 years of technical coatings experience, Wilds is focused on developing strategies for long-term asset protection from the effects of CUI in the oil and gas industry. He also directs the development of specifications and testing programs with asset owners and operators. Wilds is a member of several coatings associations and is actively involved in developing coatings corrosion and CUI test standards with NACE International.

Dr. Jeffrey Rogozinski, Global Product Director - Fusion-Bonded Epoxy/Pipe

With more than 30 years of experience in coatings and academia, Rogozinski is responsible for developing protective coatings, powder coatings, resins and additives for the oil and gas and pipeline markets. He is a member of several coatings associations and a consultant for global specification writing for CSA Group, the International Organization for Standardization (ISO), ASTM International, NACE International and others.

Travis Crotwell - Business Development Manager - Upstream Oil & Gas

With more than 17 years of experience in the coatings industry, Crotwell is responsible for market development in the upstream segment. This includes serving as a corrosion specialist and providing engineering support for owners, operators and EPC firms. Crotwell is a NACE CIP Certified Coating Inspector, SSPC CCI Certified Coatings Technician and a board member for the SSPC Gulf Coast Chapter.

SUBSEA COATING SOLUTIONS

GLOBAL PRODUCTS AND SYSTEMS

POWDER COATINGS

Description	Key Features	Coating System	Approvals	Typical Use			
PIPECLAD® 2000							
Fusion Bonded Epoxy (FBE)	Outstanding corrosion protectionExceptional adhesionLong-term protection	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C5200							
FBE	 High glass transition Highest flexibility Reelable	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C5300							
FBE	Higher glass transitionHigh flexibilityReelable	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C5400							
FBE	Higher glass transitionHigh flexibilityReelable	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ (25420						
FBE	 Topcoat of FBE High glass transition Enhance barrier and damage-resistant properties 	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Protective layer applied over FBE Topcoat for standalone system or under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ (25600						
FBE	Higher glass transitionHigh flexibilityReelable	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C5620							
FBE	 Topcoat of FBE Higher glass transition Enhances barrier and damage-resistant properties 	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Protective layer applied over FBE Topcoat for standalone system or under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C5800							
FBE	Highest glass transition	Typical thicknesses 10-30 mils FBE, may vary depending on application	ISO 21809 CSA Z245.20	 Anti-corrosion layer FBE Under insulation, concrete or polyolefin Subsea tiebacks 			
DURA-SUB™ C Rough							
Textured FBE	Anti-slip coating for increased grip	Typical thickness 3-5 mils to attain texture	N/A	Anti-slip FBE for subsequent concrete overlay			

LIQUID COATINGS

Description	Key Features	Coating System	Approvals	Typical Use			
MACROPOXY® 646							
Polyamide Epoxy	 Epoxy mastic Fast drying High-build capabilities Wide range of colors available including subsea yellow 	ISO 8501-1:2007 Sa 2.5/ SSPC-SP10/NACE 2/50-75 micron (2-3 mil) Two 175 micron layers (350 micron total system)/ Two 7 mil layers (14 mil total system)	NORSOK M-501, Edition 6, Coating system no. 7B (122°F/50°C)	Permanently immersed steel subsea structures < 122°F/50°C			
MACROPOXY® M922							
Cycloaliphatic Amine Epoxy	 Epoxy mastic Reinforced with micronized glass flake Fast drying High-build capabilities Subsea yellow available 	ISO 8501-1:2007 Sa 2.5/ SSPC-SP10/NACE 2/50-75 micron (2-3 mil) Two 175 micron layers (350 micron total system)/ Two 7 mil layers (14 mil total system)	NORSOK M-501, Edition 6, Coating system no. 7B (122°F/50°C) NORSOK M-501, Edition 6, Coating system no. 7C (176°F/80°C)	Permanently immersed steel subsea structures < 122°F/50°C Permanently immersed steel subsea processing equipment, trees, manifolds, sleds, jumpers, piping and valves < 176°F/80°C			
MACROPOXY® M922M							
Cycloaliphatic Amine Epoxy	 Epoxy mastic Reinforced with micronized glass flake Includes aluminum and anti- corrosive pigments Fast drying High-build capabilities 	ISO 8501-1:2007 Sa 2.5/ SSPC-SP10/NACE 2/50-75 micron (2-3 mil) Two 250 micron layers (500 micron total system)/ Two 10 mil layers (20 mil total system)	NORSOK M-501, Edition 6, Coating system no. 7B (122°F/50°C)	Permanently immersed steel subsea structures < 122°F/50°C			
DURA-SUB™ C1230							
Ultra-High Solids Epoxy Novolac	 Ultra-high solid epoxy Excellent edge retention Fast throughput times Provides outstanding anti-corrosion protection Passes cyclic aging test when tested in accordance with NORSOK M-501 Rev. 6 System 7A Subsea yellow available 	ISO 8501-1:2007 Sa 2.5/ SSPC-SP10/NACE 2/50-75 micron (2-3 mil) Two 175 micron layers (350 micron total system)/Two 7 mil layers (14 mil total system) OR One 300 micron layer/One 14 mils layer	NORSOK M-501, Edition 6, Coating system no. 7C temperatures 140°C, 160°C, 180°C and 200°C NORSOK M-501, Edition 6, Coating system no. 7A	Permanently immersed steel subsea processing equipment, trees, manifolds, sleds, jumpers, piping and valves < 392°F/200°C			
DURA-SUB™ C1330							
Solvent-Free Novolac Phenolic	 Ceramic and glass flake reinforced Ultra-high solid epoxy Solvent free Excellent edge retention Rapid throughput times Subsea yellow available 	ISO 8501-1:2007 Sa 2.5/ SSPC-SP10/NACE 2/50-75 micron (2-3 mil) Two 175 micron layers (350 micron total system)/ Two 7 mil layers (14 mil total system)	NORSOK M-501, Edition 6, Coating system no. 7C (356°F/180°C)	Permanently immersed steel subsea processing equipment, trees, manifolds, sleds, jumpers, piping and valves < 356°F/180°C			

SUBSEA COATING SOLUTIONS

GLOBAL PRODUCTS AND SYSTEMS

THE SHERWIN-WILLIAMS DIFFERENCE

Sherwin-Williams Protective & Marine delivers world-class industry subject matter expertise, unparalleled technical and specification service, and unmatched regional commercial team support to our customers around the globe. Our broad portfolio of high-performance coatings and systems that excel at combating corrosion helps customers achieve smarter, time-tested asset protection. We serve a wide array of markets across our rapidly growing international distribution footprint, including Oil & Gas, Water & Wastewater, Bridge & Highway, Steel Fabrication, Flooring, Food & Beverage, Fire Protection, Marine, Rail and Power.

Unparalleled distribution network

Global industry expertise

Most extensive sales organization coverage

Unmatched technical and specification service

United States & Canada sherwin-williams.com/protective swprotective@sherwin.com SHERWIN-WILLIAMS.

022 The Sherwin-Williams Company PM-909521-BR 10/22