SANIFLEX®
Interior Wall System

General Polymers SANIFLEX INTERIOR WALL SYSTEM is a multi-layer, high build wall surfacing system utilizing two coats of a flexible epoxy membrane as a base and a high solids urethane enamel topcoat for chemical resistance, color and gloss retention. This unique system offers a competitive advantage over reinforced rigid epoxy systems while providing superior crack bridging and impact resistance.

Advantages
- Crack bridging
- Impact resistant
- UV resistant, Color stable
- High chemical resistance
- Thermal shock resistant
- Ease of installation
- Waterproofing
- 4685W POLY-COTE™ Chemical Resistant to:
 - 28 Day Exposure @ 72°F Result
 - Alcohol NE
 - Ethylene Glycol NE
 - Fats, Oils & Sugars NE
 - Gasoline, Diesel & Kerosine NE
 - Hydrochloric Acid (<35%) NE
 - Lactic Acid (Milk) NE
 - Mineral Oils NE
 - Muriatic Acid NE
 - Nitric Acid (<10%) NE
 - Nitric Acid (<30%) Slight Softening
 - PM Acetate NE
 - Phosphoric Acid (<85%) NE
 - Potassium Hydroxide (<50%) NE
 - Sodium Hydroxide (<50%) NE
 - Sulfuric Acid (<50%) Slight Gloss Loss
 - Water (Distilled) NE
- Available with an antimicrobial agent

Uses
- Commercial kitchens and service corridors
- Pharmaceutical facilities and laboratories
- Healthcare and clean rooms
- Animal holding
- Food and beverage facilities
- Locker rooms, showers and restrooms
- Packaging and storage areas
- Cage and skid wash areas

Limitations
- Avoid gypsum based substrate or repair materials in continuously wet areas

Typical Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Shore D</td>
<td>23</td>
</tr>
<tr>
<td>ASTM D 2240</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>1,200 psi</td>
</tr>
<tr>
<td>ASTM D 412</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>145%</td>
</tr>
<tr>
<td>ASTM D 412</td>
<td></td>
</tr>
<tr>
<td>Adhesion</td>
<td>300 psi</td>
</tr>
<tr>
<td>ACI 503R Substrate failure</td>
<td></td>
</tr>
<tr>
<td>Flammability</td>
<td>Self-Extinguishing over concrete</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>No Cracking</td>
</tr>
<tr>
<td>ASTM C 884 (24 hours, 6ºF to 77ºF)</td>
<td></td>
</tr>
<tr>
<td>Gardner Impact</td>
<td></td>
</tr>
<tr>
<td>ASTM 2794-84</td>
<td></td>
</tr>
<tr>
<td>Permeability MIL-I-16923</td>
<td>0.01 gm/ft² / 24 hrs</td>
</tr>
<tr>
<td>@ 95% humidity</td>
<td></td>
</tr>
<tr>
<td>Fungus & Bacteria Resistance</td>
<td>Will not support growth of fungus or bacteria per test specified TT-P-34</td>
</tr>
</tbody>
</table>

ASTM D = Resin only
Installation
General Polymers materials shall only be installed by approved contractors. The following information is to be used as a guideline for the installation of the SANIFLEX INTERIOR WALL SYSTEM. Contact the Technical Service Department for assistance prior to application.

Surface Preparation — General
General Polymers systems can be applied to a variety of substrates, if the substrate is properly prepared. Preparation of surfaces other than concrete will depend on the type of substrate, such as wood, concrete block, quarry tile, etc. Should there be any questions regarding a specific substrate or condition, please contact the Technical Service Department prior to starting the project. Refer to Surface Preparation (Form G-1).

Surface Preparation — Concrete
Consult the Surface Preparation (Form G-1) for surface preparation for gypsum board, concrete block, plywood or concrete masonry unit (CMU).

Temperature
Throughout the application process, substrate temperature should be 50°F – 90°F. Substrate temperature must be at least 5°F above the dew point. Applications on concrete substrate should occur while temperature is falling to lessen offgassing. The material should not be applied in direct sunlight, if possible. Protect material from freezing prior to installation.

Application Information

<table>
<thead>
<tr>
<th>VOC MIXED</th>
<th>MATERIAL</th>
<th>MIX RATIO</th>
<th>THEORETICAL COVERAGE PER COAT CONCRETE</th>
<th>PACKAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td><100 g/L</td>
<td>Primer</td>
<td>3479</td>
<td>2:1</td>
<td>300-350 sq. ft./gal</td>
</tr>
<tr>
<td><100 g/L</td>
<td>Body Coat 2 coats</td>
<td>3552W</td>
<td>1:1</td>
<td>100-200 sq. ft./gal</td>
</tr>
<tr>
<td><100 g/L</td>
<td>First Finish Coat</td>
<td>3479</td>
<td>2:1</td>
<td>300-350 sq. ft./gal</td>
</tr>
<tr>
<td><50 g/L</td>
<td>Final Finish Coat</td>
<td>4685W</td>
<td>1:1</td>
<td>400-500 sq. ft./gal</td>
</tr>
</tbody>
</table>

If an additional coat of 4685W is required, it is recommended, the surface be sanded with a fine grit medium, (150 grit or finer), and then solvent wiped prior to recoating, even if within the recoat window.
Block Filler

Optional

BLOCK FILLER may be used to smooth texture. Contact your local General Polymers representative to design a block filling system which meets project filling and/or leveling and smoothness requirements.

Primer

Mixing and Application

1. Premix 3479A (resin) using a low speed drill and Jiffy mixer. Mix for one minute and until uniform, exercising caution not to whip air into the materials.

2. Add 2 parts 3479A (resin) to 1 part 3479B (hardener), mix with low speed drill and Jiffy mixer for three minutes and until uniform. Apply material using a 1/4” or 3/8” nap roller at a spread rate of 300-350 sq. ft. per gallon to yield 5 mils WFT depending upon substrate.

3. Allow to cure for a minimum of 3-4 hours depending upon air movement before applying base coat.

* 3479 should only be used on unpainted, porous surfaces. If the surface is painted with latex or an epoxy coating, clean and abrade the surface then apply the 3479 base coat.

Base Coat (2 coats)

Mixing and Application

1. Premix 3552WA (resin) using a low speed drill and Jiffy mixer. Mix for one minute and until uniform, exercising caution not to introduce air into the material.

2. Add 1 part 3552WA (resin) to 1 part 3552B (hardener) by volume. Mix with low speed drill and Jiffy mixer for three minutes and until uniform. To insure proper system cure and performance, strictly follow mix ratio recommendations.

3. 3552W may be applied via 3/8” roller that has had “fuzz” removed with tape or solvent washing. Can also be applied via a brush. Apply at a spread rate of 160-200 sq. ft. per gallon to yield 8-10 mils WFT evenly with no runs. Coverage will vary depending upon porosity of the substrate and surface texture. Roller application will leave a stipple finish, a final backroll with a short nap (1/4” or 3/16”) roller or foam roller will reduce but not eliminate the stipple.

4. Allow to cure overnight before applying second base coat.

5. Mix and apply 3552W as described in previous step. Roller application will require a light sanding, pole sander with an open screen and solvent wipe to remove lint, runs, or other debris prior to application of the finish coat.

6. Allow to cure overnight.

Spray application: Contact the Technical Service Department.

Intermediate Coat

Mixing and Application

1. Premix 3479A (resin) using a low speed drill and Jiffy mixer. Mix for one minute and until uniform, exercising caution not to whip air into the materials.

2. Add 2 parts 3479A (resin) to 1 part 3479B (hardener), mix with low speed drill and Jiffy mixer for three minutes and until uniform. Apply material using a 1/4” short nap roller at a spread rate of 300-350 sq. ft. per gallon to yield 5 mils WFT.

3. Allow to cure for a minimum of 3 hours depending upon air movement.

4. Sand any imperfections prior to applying finish coat.

Final Finish Coat

Mixing and Application

1. Premix 4685WA (resin) using a low speed drill and Jiffy mixer. Mix for one minute and until uniform, exercising caution not to introduce air into the material.

2. Add 1 part 4685WA (resin) to 1 part 4685B (hardener) by volume. Mix with low speed drill and Jiffy mixer for three minutes and until uniform. To insure proper system cure and performance, strictly follow mix ratio recommendations.

3. 4685W may be applied via spray, roller or brush. Apply using a 1/4” nap non-shedding, urethane enamel roller at a spread rate of 400-500 sq. ft. per gallon evenly with no runs. Note: Roller application will leave a stipple finish. A final roll with a sponge roller will reduce but not eliminate stipple. Do not apply 4685W above 85ºF.

4. Allow to cure overnight. Allow to cure 48 hours before water exposure and 7 days for full chemical resistance. In cool and/or high humidity conditions, a surface film may form which can be washed with soap and water.

Cleanup

Clean up mixing and application equipment immediately after use. Use toluene or xylene. Observe all fire and health precautions when handling or storing solvents.

Safety

Refer to the MSDS sheet before use. Federal, state, local and particular plant safety guidelines must be followed during the handling and installation and cure of these materials. Safe and proper disposal of excess materials shall be done in accordance with applicable federal, state, and local codes.
Safety
Refer to the MSDS sheet before use. All applicable federal, state, local, and particular plant safety guidelines must be followed during the handling and installation and cure of these materials.

Safe and proper disposal of excess materials shall be done in accordance with applicable federal, state, and local codes.

Material Storage
Store materials in a temperature controlled environment (50ºF - 90ºF) and out of direct sunlight.

Keep resins, hardeners, and solvents separated from each other and away from sources of ignition. One year shelf life is expected for products stored between 50ºF - 90ºF.

Maintenance
Occasional inspection of the installed material and spot repair can prolong system life. For specific information, contact the Technical Service Department.

Shipping
- Destinations East of the Rocky Mountains are shipped F.O.B. Cincinnati, Ohio.
- Destinations West of the Rocky Mountains are shipped F.O.B. Victorville, California.

For specific information relating to international shipments, contact your local sales representative.

Disclaimer
The information and recommendations set forth in this document are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product(s) offered at the time of publication. Published technical data and instructions are subject to change without notice.

Consult www.generalpolymers.com to obtain the most recent Product Data information and Application instructions.

Warranty
The Sherwin-Williams Company warrants our products to be free of manufacturing defects in accord with applicable Sherwin-Williams quality control procedures. Liability for products proven defective, if any, is limited to replacement of the defective product or the refund of the purchase price paid for the defective product as determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY SHERWIN-WILLIAMS, EXPRESSED OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.